Subdiffusive master equation with space-dependent anomalous exponent and structural instability.
نویسندگان
چکیده
We derive the fractional master equation with space-dependent anomalous exponent. We analyze the asymptotic behavior of the corresponding lattice model both analytically and by Monte Carlo simulation. We show that the subdiffusive fractional equations with constant anomalous exponent μ in a bounded domain [0,L] are not structurally stable with respect to the nonhomogeneous variations of parameter μ. In particular, the Gibbs-Boltzmann distribution is no longer the stationary solution of the fractional Fokker-Planck equation whatever the space variation of the exponent might be. We analyze the random distribution of μ in space and find that in the long-time limit, the probability distribution is highly intermediate in space and the behavior is completely dominated by very unlikely events. We show that subdiffusive fractional equations with the nonuniform random distribution of anomalous exponent is an illustration of a "Black Swan," the low probability event of the small value of the anomalous exponent that completely dominates the long-time behavior of subdiffusive systems.
منابع مشابه
Non-homogeneous random walks, subdiffusive migration of cells and anomalous chemotaxis
This paper is concerned with a non-homogeneous in space and non-local in time random walk model for anomalous subdiffusive transport of cells. Starting with a Markov model involving a structured probability density function, we derive the non-local in time master equation and fractional equation for the probability of cell position. We derive the fractional Fokker-Planck equation for the densit...
متن کاملRandom death process for the regularization of subdiffusive anomalous equations
Subdiffusive fractional equations are not structurally stable with respect to spatial perturbations to the anomalous exponent (Phys. Rev. E 85, 031132 (2012)). The question arises of applicability of these fractional equations to model real world phenomena. To rectify this problem we propose the inclusion of the random death process into the random walk scheme from which we arrive at the modifi...
متن کاملRandom death process for the regularization of subdiffusive fractional equations.
The description of subdiffusive transport in complex media by fractional equations with a constant anomalous exponent is not robust where the stationary distribution is concerned. The Gibbs-Boltzmann distribution is radically changed by even small spatial perturbations to the anomalous exponent [S. Fedotov and S. Falconer, Phys. Rev. E 85, 031132 (2012)]. To rectify this problem we propose the ...
متن کاملAnomalous escape governed by thermal 1/f noise.
We present an analytic study for subdiffusive escape of overdamped particles out of a cusp-shaped parabolic potential well which are driven by thermal, fractional Gaussian noise with a 1/omega 1-alpha power spectrum. This long-standing challenge becomes mathematically tractable by use of a generalized Langevin dynamics via its corresponding non-Markovian, time-convolutionless master equation: W...
متن کاملNonlinear subdiffusive fractional equations and the aggregation phenomenon.
In this article we address the problem of the nonlinear interaction of subdiffusive particles. We introduce the random walk model in which statistical characteristics of a random walker such as escape rate and jump distribution depend on the mean density of particles. We derive a set of nonlinear subdiffusive fractional master equations and consider their diffusion approximations. We show that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 85 3 Pt 1 شماره
صفحات -
تاریخ انتشار 2012